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ANALYSIS OF LUBRICATED SQUEEZING FLOW 

A. C. PAPANASTASIOU*, C. W. MACOSKO AND L. E. SCRIVEN 

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, M N  55455, U.S.A. 

SUMMARY 

A thin film of low-viscosity lubricating liquid between a solid wall and a viscous material reduces shear stress 
on the latter and tends to make it flow as though it were slipping along the wall. The result when the lubricated 
material is being squeezed out of the gap between approaching parallel plates is flow more nearly irrotational, 
or extensional, the more effective the lubricating film on the plates. Two Newtonian analyses of this flow 
situation are reported. One is an approximate, asymptotic analytical solution for Newtonian lubricating flow 
in the films and combined mixed flow, shear and extension, in the viscous layer. The second is a full two- 
dimensional axisymmetric solution of the momentum and continuity equations along with the kinematic 
condition which governs the motion of the interface. Both analyses indicate that there are two limiting flow 
regimes, depending on the ratio of the thickness ofeach of the two phases to radius and on the viscosity ratio of 
the two liquids. In one limit the flow is parallel squeezing and the lubricant layer slowly thins and persists a 
long time. In the other the lubricant is expelled preferentially. Implications of the results are discussed for 
rheological characterization of viscoelastic liquids and for prediction of lubricated or autolubricated flows in 
processing situations. 
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INTRODUCTION 

Extensional flows are common in nature and in technology. They are an essential part of many 
industrial processes: in coating operations as in the manufacture of photographic films and 
magnetic tapes, for example; in such polymer forming operations as blow moulding, vacuum 
forming, film blowing and foaming processes; and in lubricated and autolubricated flows of shear- 
thinning polymeric materials as in compression moulding. They are also of interest from the 
viewpoint of molecular theory because many non-Newtonian liquids behave differently in 
extension and shear. 

At the same time extensional flows, in contrast to shear flows, which are rotational, are tough to 
create experimentally because of their irrotational character, which is inconsistent with the presence 
of solid boundaries or curved menisci.' Thus measurement of extensional material functions is 
still relatively undeveloped in comparison to shear rheometry. 

Winter et aLz recently suggested that lubricated stagnation flow dies can be used to generate 
steady extensional flows. Van Aken and Jane~chitz-Kriegl~.~ used lubricated stagnation flow for 
generating equal biaxial extension. They reported birefringence and total thrust measurements 
on polystyrene. Macosko et aL5 recently reported experimental results with a lubricated planar 
stagnation die. 
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Chatraei et aL6 found squeezing flow between two disks with lubricated surfaces, (Figure 1) 
to generate a homogeneous compression or equal biaxial extension in a high viscosity polymer 
sample. The apparatus was extremely simple: two steel disks with a central rod to align the sample 
and keep it from slipping off centre, a linear variable displacement transformer to measure 
displacement, and silicone oil bath. In a recent development the central rod and the oil bath have 
been eliminated. 

For these experiments, however, there has been no rigorous mathematical analysis with which to 
evaluate whether the flow is close enough to irrotational to provide an adequate approximation. 
The data were analysed under the assumption that the flow was an ideal extensional one, despite 
the fact that the boundary conditions involved prevent this from being strictly true. The question 
remains to what extent the assumption is admissible. Pearson7 studied some interesting special 
problems by applying the Couette flow approximation to thin lubricating layers. Joseph' proposed 
a slip boundary condition to account for a thin lubricating layer; however his analysis is limited to 
steady unidirectional flows in which the lubrication approximation can be applied to both phases. 
Macosko, et al.' discussed boundary conditions for lubricated flows and suggested various 
limiting conditions. Meyerg solved the Reynolds equation for flow in a thin lubrication layer with 
the method of lines and proved that the line-discretization solution converges to the solution of a 
variational inequality derived from the Reynolds equation. In a parallel, independent study Lee et 
a!.'' analysed compressive flow between parallel disks of Newtonian liquid when there is a 
transverse viscosity gradient in the liquid. They used the Galerkin/finite element method but did 
not describe the critical aspects of their implementation, although they discussed boundary 
conditions at the edge of the disks. Their results include cases of coextrusion of two Newtonian 
liquids of different viscosities, but when the two lubricating layers together are not thinner than the 
more viscous layer between them. 

The objective here is a generally applicable theory of quasi-steady-state, creeping, two-liquid, 
axisymmetric radial flows of Newtonian liquids. The finite element treatment and the asymptotic 

CARTESIAN SYSTEM 

- 

FORCE Ho<< 1 
R 

Figure 1. Lubricated squeezing flow. Two disks are pressed together by a constant squeezing force F; each moves with 
speed u(t)  = dH/dt. The two liquids are forced out radially 
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analysis which follow apply directly or are readily extended to the flows encountered in the 
references of the last two paragraphs. One of the phases is always a thin lubrication layer. The 
interface of this layer evolves with time according to the kinematic condition at a free surface.'' 
Across the interface shear stress is continuous and, although there are discontinuities of pressure 
and viscous normal stress, the total normal stress is continuous because interfacial tension effects 
are taken to be negligible. The thin lubrication layer is here supposed to remain thick enough that 
the thin-film and wetting effects, treated by Teletzke et al." become unimportant. 

Traction boundary conditions are imposed as natural ones'3 and velocity boundary conditions 
are imposed as essential ones. The unsteady character of the problem is brought about by a 
constant squeezing force applied externally to the solid boundaries. This force is represented by an 
integral boundary condition and is treated simultaneously with the other differential equations by 
the finite element method, as described below. 

The results reveal that there are two limiting flow regimes that correspond to different ranges of 
the ratios of the thickness of the lubricating layer and viscous core layer to the disk radius and of the 
viscosity of the core liquid to that the less viscous lubricating liquid. Starting from these findings we 
construct approximate analytic solutions for the two limiting cases. In one the radial velocity peaks 
in the viscous layer and this is accompanied by predominantly Couette, or drag, flow in the 
lubricant film. In the other case the maximum of the radial velocity is in the lubricant layer, which 
moves in mainly Poiseuille, or pressure, flow. Many of the results were presented at the 
International Symposium on Interrelations between Processing Structure and Properties of 
Polymeric Materials, in Athens, 29 August-2 September 1982 (cf. Reference 14). 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The flow configuration and co-ordinates are shown in Figure 1. Under a constant squeezing force 
F ,  a viscous Newtonian liquid is being squeezed out of the gap of thickness H ( t )  between 
approaching parallel disks which are lubricated by a less viscous Newtonian liquid. Between the 
two immiscible Newtonian liquids is a non-planar axisymmetric interface at distance h(r, t )  from 
the midplane. The lubricant layers are of thickness 6(r ,  t )  = H ( t )  - h(r, t), which is much less than 
H ( t ) .  We solve the problem on just one quarter of 'the domain because of its axisymmetric 
character. Figure 2 shows the appropriate finite element domain as well as the boundary 
conditions, which are discussed below. 

R 
L L  

TRACTION F I ( - p  + T,, 1 dr 
O 

NO TRACTION 

-p+Trr = 0 

V V 
SYMMETRY CONDITIONS: v 0, Trr = 0 

Figure 2 The boundary conditions. The constant squeezing force is distributed uniformly over each disk 
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Within each flowing liquid, mass and momentum must be conserved: for creeping, quasi-steady, 
incompressible flow and negligible effects of gravity this requires that in the viscous phase 

V.uv = 0, V.TV = 0. (1) 

V.uL = 0, V.TL = 0. (2) 

and in the liquid phase 

T is the total stress tensor, defined for a Newtonian liquid as T = - pI + z = - pI + ~ [ V U  + (Vu)'], 
p being the pressure relative to that in the adjacent gas phase, and p the viscosity of the liquid. 
That the quasi-steady creeping flow approximation is appropriate is born out by the results, as 
discussed below. The location h(r, t) of the interface is an additional unknown field; the kinematic 
condition that the free surface remain a material surface provides the additional equation needed: 

ah  
- + u.Vh = 0. 
at (3) 

So the only time derivative is in the kinematic condition (3), since time derivatives of velocity 
are negligible in the momentum equations under the quasi-steady state approximation. 

The momentum equation requires boundary conditions on every boundary. These are 
summarized in Figure 2. At the midplane of symmetry there is neither normal velocity nor viscous 
shear stress. Along the z-axis of symmetry there is neither radial velocity nor shear stress. At the 
moving disks the normal velocity is uniform and the total normal stress integrated over the surface 
of the disk is equal to the squeezing force F.  At the interface, surface tension effects are supposed to 
be negligible and so the viscous traction must be continuous: 

n.(TV - TL) = 0. (4) 
The projections of this equation require that shear stress and normal stress be continuous: 

tn :(TV - TL) = 0, i.e. TY, - Tk = 0, 
nn:(TV - TL) = 0, i.e. T:,, - T,", = 0. 

Here t is the tangent unit vector to the interface and n is the normal unit vector to the interface. 
Velocity must also be continuous across the interface: 

uv = uL. (6) 

(7) 
Although this is stric;tly true only at the free surface of the liquid extruded from the gap between the 
disks as squeezing proceeds (and only when the capillary pressure of surface tension acting in the 
curved meniscus is negligible), the error introduced is small inasmuch as H/R << 1 and the velocity 
profile within the extrudate becomes uniform within a distance r - R of the order of H. (The 
situation when the gap is not much less than the disk radius is treated by Lee et al." We impose 
no boundary condition on the shear stress at the outlet and instead require that the x-component 
of the momentum equation holds within the domain and at the boundary r = R. The effects of these 
boundary conditions on the results are described below. 

At the outlet we take the normal stress to be negligible: 

T:,, = Tk,, = 0. 

The motion of the disk toward the fixed midplane is governed by Newton's second law: 
R 

- ( W + M g ) +  27~rTf ; , , I~=~dr ,  
d 2 H  M-= 
dt2 0 
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where M is the mass of the disk, W is the weight of the applied load on it and Tt,, I = H  is the normal 
stress exerted on the disk by the lubricant. We suppose that the motion is slow, i.e. W + 
Mg >> M(d2H/dt2), so that the boundary condition is 

F =  W + M g =  2 7 ~ r T i , , I ~ = ~ d r ,  s: 
along with the condition of no slip 

e;uL = 0, 
ez.uL = - o(t)  = dH/dt. (9) 

Here u(t) is the uniform normal speed of the disk with respect to the midplane, which responds as a 
function of time to the constant squeezing force F = W + Mg. 

Dimensionless forms 

convenient units of length (R), stress ( 2 ,  = F/aR2) and velocity (zo R/2pv): 
The governing equations and boundary conditions are made dimensionless by choosing 

z* = z/R, r* = r/R, h* = h/R, p* = p/z,, T* = TIT,, (10) 

U* = ( ~ / L ~ / T ~ R ) U ,  t* = t(2pv/z0R)/R. 

The resulting dimensionless equations, with asterisks suppressed here and hereafter, are 

V.uV = 0, V . T V  = 0, TV = - pvI  + ~ [ V U "  + (VU')~], (I*) 

V * u L  = 0, V*TL = 0, TL = - pLI + 
ah 
- + u.Vh = 0, 
at 

n.(TV - T L )  = 0, 

T;V,-T:=O, T,V,-Tf;,=O, 

u v  = uL, 

T,V, = T,L, = 0, 

2.1: Tk,,lz=Hrdr= 1, 

e;uL = 0, ez .uL = - o(t) = dH/dt. 

The units chosen preserve the continuity of the dimensionless velocities at the interface ((3*) and 
(6*)) and facilitate programming the computations in the two phases, which then differ solely by the 
viscosity ratio ((1*) and (2*)). 

FINITE ELEMENT FORMULATION 

The finite element formulation of free surface problems is well described elsewhere.".'5 Here we 
merely outline the procedure, emphasizing those parts of the formulation that relate to the 
interface and to the axisymmetric character of the flow. 
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In the Galerkin/finite element method, the unknown velocity components, pressure and 
interface location are expanded in a suitable set of finite element basis functions, 4i  and $i: 

Here C; and y are Cartesian co-ordinates in a basic square Q = { 5, y/- 1 d 5 < 1, - 1 d r]  d 1 } from 
which each of the subdomains or elements of the actual flow is mapped through an isoparametric 
relation in order to accommodate the irregular boundaries and to reduce computational cost, as 
compared to finite difference discretization. Hence @(<, y) and t,ki(t, y) are prescribed axisymmetric 
functions defined only on the basic square Q. They are shown in Figure 3. The basis functions 
4i(C;, r]  = - 1 or r]  = 1) in which interface position is expanded are the one-dimensional functions 
c$~((, q) evaluated at r]  = - 1 for elements adjacent to the interface on the side of the lubricant phase, 
and at r]  = 1 for elements adjacent to the interface on the side of the viscous phase. The coefficients 
ui(t), ui(t),  p i ( t )  hi( t )  are the values of the unknowns at the nodes of the elements and are determined 
by substituting the expansions (1 1) in (1*) to (3*) and integrally weighted the residuals, i.e. the 
amounts by which these equations fail to be satisfied, with each of the basis functions. By requiring 
these weighted residuals to vanish, the residuals themselves are made orthogonal to the finite- 
dimension function space spanned by the basis functions: e.g. M i  = Sv(V.T)4'dV = 0. For the 
axisymmetric problem at hand, V,  the domain in which the equations are solved, extends from 0 
to 1 in the radial direction, from 0 to H(t)/R to H(t)/R in the lubricant layer, and from 0 to 7c in the 
&direction. 

The Galerkin weighted residuals of the continuity equation in the viscous and the lubricant 
layers are, respectively 

AXISYMMETRIC ELEMENT 

0 in subdomain 

1 elsewhere 
Basis functions + +, ( E )  - + 

u = pi +i(E,$, v = XV,#$E,$ 
I 

p=  ,? Pi Jli (€,7) BASIC SQUARE 

h = C  hi + i ( E , v = l )  
I 

Figure 3. The tessellation into axisymmetric finite elements and the biquadratic basis functions 4i 
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C'," = j; j: s"""" (V*U")t,b'dV = n (V-u")$'r dr dz = 0, 
0 

W ) / R  

h(r,f)lR Ci,L = 1: 1: 1 (V*uL)t,bidV = n s: SEi'rR (V*UL)t,b'r dr dz = 0. (12) 

The Galerkin weighted residuals of the momentum equation are broken into two parts with the 
divergence theorem: 

M i  = (V.T)@ dV = - jssv (V+'.T) dV + { A  J(n-T)4'dA = 0. 

n is the outward pointing normal to the boundary; n, is the normal to the interface. Thus for the 
viscous layer the Galerkin weighted residuals are 

MY = s: jl shiR (V@.TV)rdrd8dz - {: j: (n,.Tv)4'rdrd8 - {:j:( - e;TV)4' I z =  or dr d8 
0 

Viscous Layer Interface Midplane 

- 1; [ h i R  (er-TV)4ilr=1 d8dz - (-e,.TVI,=o +ee.TVIe=,)drdz=O. (13) 1: s: 
Plane Through z-Axis 

0 

Exit 

Projected onto orthogonal directions i, k and I, shown in Figure 1, equation (13) has components 
which, after being integrated over 8, are 

MZj =j.Mv = 0, 
(134 

1 
- so (k.n,.TV)4'rdr + (k~e;TV)~'I ,=,rdr- (k.e;T")4'Ir=, dz = 0, (13b) 

- ~ ~ ( I . n , p . T " ) @ r d r  + ( I~e ;TV)~ '~ ,= , rdr  - (l~e;TV)~'I ,=,  dz = 0. (13c) 

The identities er=jsin8+kcos8, e z = l ,  ee(e=,-,= -eel,=,= -k, Jgsin8d8= +2,  and 
Jg cos 8d8 = 0, have been made in (13). The second term of (13b) is the tangential traction of 
the liquid on the interface and is balanced by that exerted by the lubricant layer as expressed 
in (5b). The third term is the tangential traction on the midplane of symmetry, z = 0, and is zero. 
The fourth term is the normal traction at the exit, which vanishes by (7). The second term of 
(1 3c) is the normal traction on the interface and is balanced by that of the lubricant layer. The 
third term is the normal traction on the midplane of symmetry and is not known a priori; 
however, the equation that requires the momentum residual to vanish over each subdomain 
around a node on the midplane is replaced by the essential boundary condition e;uV = 0. 

Similar equations of vanishing momentum weighted residuals are generated for the lubricant 
layer and its boundaries. The domain of integration extends from 0 to 1 in the r-direction, from 

s: 1: 
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h(r, t)/R to H(t) /R in the z-direction and from 0 to n in the &direction. The equations that require 
the r-momentum and z-momentum residuals to vanish over each subdomain around a node on the 
plate are replaced by the essential boundary conditions e,..uL = 0 and ez .uL = - v( t ) ,  respectively. 
At just one of these nodes the latter condition is replaced by the overall force balance (8*). The 
equation that requires the r-momentum residuals to vanish over each subdomain around a node 
on the z-axis is replaced by the essential boundary condition e;uL = 0. 

At the interface the velocity and the traction must be continuous. This is ensured by requiring the 
corresponding velocity coefficients ui and vi in the two phases to be identical at  common nodes 
on the interface. In contrast, pressure is allowed to be discontinuous by assigning distinct pressure 
coefficients p k  and p v  at those nodes. Figure 4 shows the arrangement of the unknown coefficients 
in elements adjacent to the interface, and the basic square Q(( ,q )  which is isoparametrically 
mapped into these elements. 

The evolution of the flow with time is dictated by the kinematic equation (3*), which is 
discretized by forward differencing to give 

This equation is then weighted with the biquadratic basis functions @((, - 1) in cases of elements in 
the lubricant layer adjacent to the interface and c$~((, 1) in cases of elements in the viscous phase 
there: 

These equations are solved simultaneously with those of continuity residuals (1 2) and momentum 
residuals (1 3). 

The domain was tessellated into 76 quadrilateral elements; biquadratic basis functions were used 
to approximate velocity and bilinear ones to approximate pressure. The initially unknown location 
of the interface was approximated by the same biquadratic basis functions, but evaluated at  the 
interface (indeed at v]  = - 1 or = 1 through the isoparametric mapping). For comparable 
accuracy small quadrilateral elements were found necessary near the outlet, where the boundary 
conditions change from 'no slip' to 'no traction'. The tessellation is shown in Figure 5. As the two 
disks approached each other this tessellation was rearranged with time in such a way that the ratio 
of the z-co-ordinates of an element to that of the interface remained constant. The Galerkin 
weightings-momentum equations with biquadratics, continuity equations with bilinears and 
kinematic equations with quadratics-resulted in a linear system of 859 linear equations in as 
many unknowns. Apart from the integral boundary condition from the squeezing force, the matrix 
of this large system is almost banded. To solve it we used a modified16 frontal solver." 

The derivatives and integrals in equation (13) and in their counterparts for the lubricant layer, 
and in equation (14b) were evaluated in the basic square Q(5,  q)  and on its boundary, through the 
isoparametric mapping r = xYri4'(5, q), z = xPzi(h)4'(<, q), which maps Q(& q )  into each of 
the 76 quadrilaterals. Here ri and zi(h) are the co-ordinates of the nodes; zi(h) is a function of 
the interface elevation h because the tessellation deforms in the z-direction with the interface. 
Further details of this process, e.g. the isoparametric mapping and the transformations of 
derivatives and integrals appear elsewhere.' 1,13,15 

The computations were started from an initial rest state {u = v = p = 0, h&,H(')}. The initial 
configuration of the interface, h(r), need not have been parallel to the disks, but in what follows the 
interface was a plane h(O) parallel to the disks unless otherwise stated. At time t = 0 the constant 
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Figure 4. Isoparametric mapping of basic square Q(r n) into elements adjacent to the interface 

H(t) 
R 

0 1 

Figure 5. The finite element tessellation in the meridional plane: 4 x 19 quadrilateral elements, which result in 859 nodal 
unknowns 

squeezing force was applied and the set { u(O), v(O) ,  P (O), h(l), H")} was computed after time (At)l .  
The tessellation was then updated with the newly found nodal values h = hi and H = Hi and the set 
{u('), v(I),p('), h(2), H(2)} after time (At)2 was computed. In the matrix form Ax = b, 
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-Ml MX M l  0 0 0 0 0 
M Y M Y M Y 0  0 0 0 0 
c v c v o o o  0 0 0 
K K O K K K O O  
0 0 0 O M k M k M k O  
0 0 0 O M f M f - M f O  
0 0 O 0 C L C L O  0 

- 0  0 0 0 0 BL 0 B' 
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(15) 

where MF is the matrix of coefficients of the p-component of the momentum weighted residual 
equation of the G-layer, equations (13); CG is the matrix of coefficients of the continuity equation of 
the G-layer, equation (12); K is the matrix of coefficients of the kinematic equation weighted 
residuals, equation (14b); BL is the matrix of coefficients of the kinematic equation (9); B.C. 1 are the 
essential boundary conditions at the z-axis, u = 0; B.C. 2 are the essential boundary conditions at 
the midplane, u = 0; B.C. 3 are the essential boundary conditions at the plate and at the z-axis, 
u = 0; B.C. 4 are the essential boundary conditions at the plate, u = u(t) and {u("), d"), p'"), h'"), H'")) 
are vectors of the nodal unknowns at time (At),,, e.g. u(") = {uy) ,  u(,), . . . , uf,.)}, v(") = { uy) ,  u y ) ,  . . . , ug) } ,  
etc. 

The choice of the time step At in this forward difference scheme is crucial to avoiding excessive 
computation cost. Analysis of numerical stability based on a spectral radius of the amplification 
matrix1*,l9 A, under the assumption of planar interface, i.e. ah/& = 0, showed that the forward 
difference scheme gives a stable non-oscillatory solution if 

The time step At was continuously updated according to the computed derivatives in (16) so 
that E = 0.8. The number and the size of the time steps depend on the magnitude of the squeezing 
force and the viscosity ratio. In general small time steps were required initially (0.01 s) and fairly 
large time steps afterwards (05s). A typical run took 100 time steps. 

ASYMPTOTIC ANALYSIS 

The finite element results described in the next section showed that for an initially planar interface 
there are two limiting flow regimes; these are diagrammed in Figure 6. When pLR2/pVh2 >> 1, 

R 2  P v  8 p v  8 <<, 
H *  P L  H P L  H 

I<< -<<- - 

Figure 6. The two limiting flow regimes that are predicted by finite element analysis depend on the dimensionless group 
PLR21P" d2 
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where 6 is the lubricant thickness 6(t, r )  = H(t) - h(r, t), the interface remains planar and the 
maximum radial velocity is in the viscous layer. When pLRZ/pV6’ << 1 the interface attains a 
slightly parabolic shape, the lubricant is encapsulated between the rigid approaching disk and 
the highly viscous material, and the velocity maximum occurs in the lubricant layer. For these 
two limiting flow regimes we constructed approximate analytic solutions guided by the qualitative 
features of the finite element solutions. Although the dimensionless group pLR2/p,6’ was 
chosen on the basis of a series of results of Galerkin/finite element analyses, its mathematical 
origin and physical significance are illuminated by dimensional analysis of the governing 
equations and boundary conditions, as is shown in the Appendix. 

The case ,uLRZ/pV6’ >> 1: parallel squeezing 

The interface remains planar and the velocity maximum is in the viscous layer. We then seek 
Stefan-type” similarity solutions, which satisfy the momentum and continuity equations, of the 
form 

uL = ar(z’ - H’), 
u” = r(b - cz’), 

where a, b and c are constants. The ratio of the extension rate, i = auv/& = b - cz’, to the 
shear rate, 3 = auv/az = - 2rc2, controls the b/c ratio. If b >> cH’ the flow is virtually extensional 
and if b << cH’ the flow is mixed, dominated by shear. The boundary conditions (5a) and (6) are 
sufficient to determine the three constants. The solution is then 

v(t)r 

HWPL 

[ E 2 H ( t ) 6 ( t )  + h’(t) - z’ , 1 4H3(-+t) WPV ” 
u”(t, r ,  z) = 

where u(t )  is the speed with which one disk approaches the other. Plainly the flow in the viscous 
layer is a controllable mixture of shear and extension: all that need be adjusted is the ‘mobility 
ratio’ 6pv/HpL. Equation (18a) reduces to the Stefan” and Reynolds’’ equation when a single 
layer is squeezed, i.e. in the limit 6 = 0. It reduces to ideal extensional flow in the limit 

The pressure distributions in the two layers are found by integrating the momentum 
JPV/HPL >> 5. 
equations (1) and (2) and applying boundary conditions (5b) and (7): 
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The squeezing force F can be calculated from (8): 

This force can be made proportional to the viscosity of the lubricant by making the gap far 
smaller than the disk radius and the mobility ratio high, i.e. by arranging that R2/H2>> 
6/iv/H~L >>*. It reduces to the Stefan squeezing force in the limit 6 = 0. Equation (18e) agrees 
with the one proposed by Lee et al." for a thin lubrication layer, i.e. for 6/H << 1. 

The evolution of the lubricant layer thickness 6(t)  is found by solving the Reynolds equation 
in the lubricant layer: 

The solution, under the assumption that the interface remains planar, is 

The plate separation 

_ _  

H(t) follows from (18e) and (18g). It is 

y' (H& 
16Ft Pv (z:) 3npLR4' 

- 16L-+n - =--- - 
PLR 

When pV60Ho/pLRZ >> 1 the equation reduces to 

which represents an ideal extensional deformation." 

The case pLRZlpVd2 << 1: nearly extensional flow 

The interface attains a slightly parabolic shape and the velocity maximum is in the lubricant 
layer. Therefore we seek slowly varying solutions, which satisfy the momentum and continuity 
equations and the no slip boundary conditions, of the form 

uv = G(r)(l + z'd), 

uL = F(r)[z2 - z(H + h) + Hh] + G(r)(l + h2d)- (19) 
Z - H  
h - H '  

The flow in the lubricant consists of a Poiseuille flow represented by the first term, and of a 
drag or Couette flow induced by the viscous layer, represented by the second term. The separability 
of the r and z dependences of u r  is indicated by the finite element results. Substituting (19) into 
(5a) and (6), eliminating G(r), and applying boundary conditions (5b) and (7) yields the solution 
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uL(t, r, z )  = - u( t )  [ :L: y:ty H ( t i i 4 ( t ) ] [ z 2  - z ~ H ( t )  + WI + H ( W ( O I  

z - H(t )  + uv- 
h(t)  - (t)' 

v(t)Pv H(t )  [' -I- 6KS(t) H2( t )  - h2(t)  

p L ( t 9 r 9 z ) = * [ 3 + 5 ( m ) 7 ] ,  8 &H(t)  R4-r4 

(204 

(204 

F =  rdr .  (204 

V p L  H ( t )  R2 - r 2  
P (t ,r ,z)  =- 

H(t )  

The evolution of the lubricant layer thickness d( t )  is found by solving the Reynolds equation 
in the lubricant layer, 

(2 1 4  - ( r j:::' uL dz) = at. 
The solution to (21a), provided the interface is almost planar, i.e. ad@ w 0, is 

-_ 3 ~ ~ r 2 + -  d3(t ,r)  
2PV H 

_ _  ~ P L  r 2  +% 
2Pv Ho 

The plate separation H(t),  for negligible 3pLr2/2pV, follows from (21b) and (20e). It is 

The qualitative features of equation (21c) are shown in Figure 7. Both equations (21c) and 
Figure 7 show that an almost ideal extensional flow persists until the second term of the equation 
becomes significant. 

Figure 7. The evolution of the disk separation as predicted by the asymptotic solution, equation (21c), for the conditions 
F / A  = 2540 Pa, 6 , /H,  = 0.5 mm/7.85 mm and R / H ,  = 25.4mm/9.35 mm 
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In the limit pLr2/pvd2(t)  << 1, equations (20a), (20c) and (20e), reduce to the ideal extension 
forms 

The extension rate is then i :=au/ar=u( t ) /2H(t )  and by virtue of (22c) is a constant: 
i: = F/67cR2pv. Thus steady ideal extensional flow is approached under these conditions. 

In the work reported here we have not investigated whether the solutions found are stable 
to flow disturbances. Instead we rely on the available experimental data22 and on the finite 
element results which show that they do have a domain of stability: Figure 8 shows that, starting 
from any of the interface profiles shown there, a parabolic profile is always attained shortly after 
the application of the squeezing force. 

I I I I 
0.25 0.5 0.75 1.0 

r / R  

Figure 8. Computer-generated finite element predictions of the interface evolution starting from different initial 
configurations 
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RESULTS AND DISCUSSION 

To validate the results of the finite element analysis we first tested them against the asymptotic 
analysis of squeezing flow in a single layer. This analysis is due to Stefan.20 Figure 9 compares 
radial velocities, pressure distribution and evolution of the thickness. The pressure distribution 
disagrees by as much as 10 per cent near the outlet; the cause is the natural boundary condition 
(7) as opposed to a vanishing pressure in Stefan's asymptotic analysis. When the viscosities of 
the two layers are identical the results from two-layer squeezing flow calculations agree in the 
same way with Stefan's asymptotic solution. The effects of changing the boundary condition at 
the outlet are indicated in Figure 10, which shows the pressure and centre-plane radial velocity 
in the last few elements at the outflow. Three kinds of boundary conditions are examined. One 
is vanishing of the pressure at the outlet ( p  = 0). Another is vanishing of the total normal stress 
at the outlet (equation (7)). A third option is no boundary condition on the normal stress at 
the outlet, requiring instead that the r-component of the Galerkin weighted residual of the 
momentum equation hold in the subdomain and at its boundary r = R. (As described on p. 000 

RADIAL VELOCITIES 

0.2 0.6 r /R 

PRESSURE THICKNESS 2:oh,d Y a $p---- 
n 

0 0.5 1 0 50  100 150 
r /R TIME(S) 

Figure 9. Computer-generated finite element predictions of squeezing flow of a single layer, compared with Stefan'sz0 
asymptotic analysis (--) 

1.20 NO 
BOUNDARY 
CONDITION 

1°00!- ' - 
Y a" 5001 

a I O!+ 

0 

w > 
s 

h I I I 
o y  0.9 1.0 

r /R 

-5001 

Figure 10. The effects of different outlet boundary conditions on the pressure and centre-plane radial velocity 
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+I 

*I 

*! 

*' 
* 

the shear stress at the outlet was invariably treated this way.) The results show that the choice 
of the boundary conditions at the outlet affects the flow only locally within a distance R = r of 
the order of H. These effects are vanishingly small inasmuch as H/R << 1.  

In Figure 11 the predictions for two-layer flow are shown for the case pLR2/pVd2 >> 1. Both 
finite element results and asymptotic analysis show that the flow in the viscous phase is closer 
to extensional, the smaller the viscosity ratio pL/pv, and reduces to the conventional parabolic 
flow when this ratio is unity, as shown in Figure 9. The flow in the lubricant is mostly induced 
by drag of the flowing viscous layer. However, there is a small amount of pressure-driven or 
Poiseuille flow as well, neglect of which in the asymptotic analysis would violate the boundary 
conditions at the interface (conditions 5(a) and (6)).  The pressure in both phases is relatively 
low, as predicted by both finite element and asymptotic analysis. The pressure is discontinuous 
at the interface according to the equation (5b), but the pressure gradient is continuous. The 
interface remains planar, the lubricant thickness decreases uniformly with time, and the lubricant 
persists for a long time. The squeezing force is proportional to the viscosity of the lubricant 
for R2/H2 >> pvd/pLH >> 1. 

Predictions for the other limiting case, pLR2/pvd2 << 1 are shown in Figure 12. Again finite 
element results agree with the asymptotic solution. There is some disagreement in the lubricant 
layer near the outlet because the assumption pLr2/pvd2 << 1 starts to fail. The interface does 
not remain planar any more. It curves, encapsulating the lubricant, and a pressure dominated 
flow is induced. The radial velocity has a profound maximum within the lubricant layer. The 

-1  -1 C I  - -1 DI 

d -I DI 

' d -I - - 1  

--c -1 DI 

! 

I 

I I 
I I I I ,  

RADIAL VELOCITIES 

0 0.25 0.5 0.75 1 

r I R  

Figure 1 1 .  Computer-generated finite element predictions in the case pLRZ/pvGZ = 5 and R 2 / H z  = 25 are well 
approximated by the asymptotic solution (---) 
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squeezing force is proportional to the viscosity of the viscous layer and the flow in that layer 
approaches an extensional, irrotational one. 

In both limiting cases the accelerations d2H/dt2 and &/at can be evaluated from the results 
and prove to be negligible in the parameter ranges of interest: 

Thus the quasi-steady creeping flow approximation is entirely justified. 
Figure 13 shows that the time course of disk separation under a constant squeezing force, as 

measured by Chatraei”, is predicted satisfactorily by both finite element and asymptotic analysis. 
In Figure 14 the lubricant pressure, which was measured at four different radial positions 

after a steady-state was achieved, is plotted along with finite element predictions and the 
asymptotic approximation. Again the finite element results agree with the experiments throughout 
the flow domain, apart from the measurement near the centre which was affected by the presence 
of a central rod used to align the sample and keep it from slipping off-centre. The asymptotic 
solution fails near the outlet, i.e. near the disk circumference, because the assumption 
pLr2/pVd2 << 1, on which it rests, starts to fail there. 

In Figure 15 the evolution of the lubricant pressure at the second radial position is plotted. 
The finite element predictions agree with the experiments. The asymptotic solution slightly 
overestimates these results. 

Finally, in Figure 16 the extension rate 8 = [l/Ht]dH(t)/dt calculated by Chatraei”, who 
assumed an ideal extensional flow in the viscous layer, is plotted along with finite element 
predictions and the asymptotic approximation. A steady extension, 8 = constant, is reached 
after a short start-up of 20 s. Whereas the finite element predictions agree throughout with these 

Figure 13. The evolution of the disk separation as measured by Chatraei et aL6 (0)  and as predicted by the finite element 
analysis (-) and by the equation (21c) (--), for the condition pJpv = 0.45 pa s/270,000 Pas; R / H ,  = 25.4 mm/9.35 mm 

and 6,/H, = 0.5 mm/9.35 mm 
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Figure 14. The lubricant pressure distribution as measured by ChatraeiZ2 (0 )  and as predicted by the finite element 
analysis (-) and by the asymptotic solution (--), for the conditions (a) pL/pv = 0.45 Pa s/27,000 Pas, 
R / H ,  = 25.4mm/7.85 mm, 6 , / H ,  = 0.5 mm/7.85 mm and F / A  = 2540 Pa; (b) pL/pv = 0.45 Pa s/27,000 Pa s, 

R / H ,  = 25.4 mm/9.35 mm, 6 , / H ,  = 0.5 mm/9.35 mm and F / A  = 1340 Pa 

Figure 15. The evolution of the lubricant pressure at the second radial position of Figure 12, as measured by Chatraei22 
(O), and as predicted by the finite element analysis (-) and by the asymptotic solution (--), for the conditions 

pL/pv = 0.45 Pa s/27,000 Pas, R / H ,  = 25.4mm/7.85 mm, 6 , / H ,  = 0.5 mm/7.85 mm and F / A  = 2540 Pa 
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experimental findings, the asymptotic solution fails within the start-up period but does predict 
the final steady extension rate that was measured. 

CONCLUSION 

The methods of subdomains and Galerkin weighted residuals together with the extremely 
convenient finite element basis functions (in this case second degree polynomials for velocity, 
first degree for pressure) permitted accurate analysis of the axisymmetric, time dependent flow 
of multiple layers of Newtonian liquid, including the pressure discontinuity at the free interfaces 
between layers and the integrated traction boundary condition. The qualitative features of the 
results suggested two limiting flow regimes, for which approximate solutions were constructed 
in closed’ form. For these limiting cases the predictions computed with the aid of finite element 
basis functions agree with the closed-form solutions, and both agree with the available 
experimental data. 

Both the computer-aided finite element analysis and closed form asymptotic solutions indicate 
that controllably mixed flows can be achieved with the lubricated squeezing method. Shear 
dominates over extension in these flows when the viscosities of the two liquids are of the same 
order of magnitude. But the ideal, irrotational extensional flow is closely approached in the core 
liquid when its viscosity is more than 100 times that of thin lubricating layers on both of the 
approaching disks. 

The dimensionless group ~~R’/p,,6~, where 6 is lubricant film thickness and R is the radius 
of disk, characterizes the flow in the lubricant. When pLR2/pVd2 >> 1, drag flow of Couette type 
is induced in the lubricant by the relatively faster moving viscous phase. When pLR2/pV6’ << 1, 
pressure flow of Poiseuille type is induced in the lubricant, which lies between an approaching 
rigid disk and the almost stationary viscous phase. The squeezing force is also defined by the 
same dimensionless group. 

The steady ideal extensional flow is well approximated whenever pLR2/pVd2 is much less than 
unity. In this case the ratio u(t)/H(t) is constant and hence so also is the extension rate 
i: = f i ( t ) /H( t )  = u(t)/H(t). Thus under these conditions the constant-force, lubricated squeezing 
flows would appear to be ideal for extensional measurements. 

The chief limitations of lubricated squeezing flows as a means of characterizing non-Newtonian 
liquids are two; one experimental and one theoretical. Only a few highly viscous materials have 
been tested so far and whether the technique can be made to work on lower viscosity materials 
remains to be established. From the theoretical point of view, there is a need of regorous 
mathematical theory and computer methodology to treat what may be more complex flows when 
viscoelastic materials that require modern integral constitutive equations are to be 
~haracterized.’~ 
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APPENDIX: THE DIMENSIONLESS PARAMETER pLR2/pV6’ 

To scale the radial components of the momentum equations (1) and (2) and interface conditions (5) 
in the usual way to permit comparison of the orders of magnitude of terms in the limiting cases of 
interest, the appropriate units of length are R in the radial direction in both layers and 6 and H-6 in 
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the axial direction in the lubricant layer (L) and viscous layer (V), respectively. Then with v the unit 
of velocity and pVu/R the unit of pressure the equations are 

u av: V v av: U 
- PV-P; + 2k-- = - pVRp: + 2pv-- 6 az* H-6az*‘ R 

The variables are of order unity, so that under the circumstances that d2/H2 << 1 (thin lubricant 
layer) and H2/R2 << 1 (small gap-to-flow distance ratio, a condition for the lubrication approxim- 
ation), the terms multiplied by each can be neglected. The remaining terms define a lubrication- 
type approximation (asterisks are suppressed here and hereafter): 

- P L =  -Pv. (30) 
Plainly the flow in the two layers is controlled by the dimensions groups pLR2/pVb2 and 
pVd/pL(H - 6 )  z pVd/pLH inasmuch as R/(H - 6 )  >> 1 in the situations treated above. 

For a given pressure gradient apL/ar, which is mainly set by the external squeezing force 
according to the boundary conditions (8) at the moving plate, the flow in the lubricant layer is 
controlled by the dimensionless group if pLR2/pL62 >> 1 then a2uL/az2 is small and the 
flow approaches the Couette type (‘parallel squeezing’); if pLR2/p,d2 << 1 then a2uL/az2 is large and 
the flow approaches the Poiseuille limit (‘nearly extensional flow’). The sigificance of the other 
dimensionless groups, pVS/pLH, is obvious from equations (1 8a)-( 18e) and (20a)-(20e). 
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